If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-144x+144=0
a = 4; b = -144; c = +144;
Δ = b2-4ac
Δ = -1442-4·4·144
Δ = 18432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18432}=\sqrt{9216*2}=\sqrt{9216}*\sqrt{2}=96\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-144)-96\sqrt{2}}{2*4}=\frac{144-96\sqrt{2}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-144)+96\sqrt{2}}{2*4}=\frac{144+96\sqrt{2}}{8} $
| 9x=-30 | | 2n+1=7+8n | | (4-2)/3=2x/5 | | 6n+n=36 | | r+8=8+2r | | (x=40) | | -9+m-6m=m+3 | | -x-2x-3=x-7-8x | | 6+1/2n=9 | | -3x–7=2 | | 1+2x+7=6+4x | | 2.6a-13-1.1a=-1.0a+2 | | 18/5=19/7x+1 | | v+4+6=-4v+7v | | -2.7g-81+16.7g=8.2g-12-7.2g | | 7x2+1=8 | | 3/2×+5y=16 | | 12+13x=49 | | 13=t=21 | | 11=7a+4a | | 28.2+1.4x-18=3.2x-9.6 | | b=7=-20 | | -x2=-64 | | 4x+x=29 | | 4x-(4-x=5x | | -32.4x+14+14.4x=6x+2 | | x2=-166 | | 9x+7.8=7x+11 | | x+4(x+7)=75 | | 9x-4=2x+20 | | 9-2(2p-1)=45 | | 7-9x=18.7x+1-15.7x |